Докембрий. архейский и протерозойский акроны


От возникновения земли до 570 млн лет назад.
Эпоха докембрия продолжалась с момента образования Земли до появления первых многоклеточных организмов примерно 570 млн лет назад. Возраст древнейших из известных нам горных пород составляет всего 3,9 млрд лет, так что о юности нашей планеты мы знаем ничтожно мало. Причем даже эти горные породы претерпели за миллиарды лет столь большие трансформации, что мало о чем могут нам рассказать.
Около 2,5 млрд лет назад вся земная суша была, по всей видимости, объединена в один громадный сверхматерик, впоследствии расколовшийся на несколько.
К концу эпохи докембрия материки вновь слились, образовав новый сверхматерик. Все эти пертурбации на суше и на море сопровождались грандиозными климатическими изменениями. В течение докембрия мир пережил по крайней мере три ледниковых периода. Наиболее древний начался около 2,3 млрд лет назад. Самое грандиозное оледенение за всю историю нашей планеты произошло между 1 млрд и 600 млн лет тому назад.
Ранняя атмосфера Земли не содержала кислорода. Она состояла в основном из газов метана и аммиака, меньшего количества сероводорода, водяного пара, азота и водорода, а также окиси и двуокиси углерода. Однако с возникновением жизни на Земле картина резко изменилась.

Первые клетки. Метан и прочие газы, содержавшиеся в первобытной атмосфере Земли, растворялись в воде морей, озер и луж, образуя сложный химический "бульон" (1). Лабораторные опыты показали, что под воздействием разряда молнии в таком "бульоне" начинают происходить химические реакции и образуются более сложные химические соединения, очень сходные с теми, что встречаются в живых клетках (2). В конечном итоге некоторые из органических соединений приобрели способность к самовоспроизводству, то есть стали создавать копии самих себя (3). В том же "бульоне" содержались и жировые шарики (4). Когда ветер сильно перемешивал "бульон", некоторые сложные соединения могли попадать внутрь этих жировых шариков (5) и оставаться там "взаперти". Со временем эти гибридные структуры эволюционировали в живые клетки, окруженные жировой оболочкой.
Материя жизни.

Все живые существа содержат определенный набор особых химических соединений.
Клетка в основном состоит из протеинов или из синтезируемых ими веществ. Все протеины, встречающиеся в живой материи, образуются нитями особых химических веществ - аминокислот. Клетки содержат также другое химическое вещество - АТФ, используемое для накапливания энергии.
Программа создания новых клеток - и даже новых животных или растений - существует в виде специального химического кода, содержащегося в длинной молекуле под названием ДНК. Каждая разновидность живых организмов обладает своим особым типом ДНК. Все эти вещества - протеины, АТФ и ДНК - содержат углерод, то есть являются органическими соединениями. Но каким же образом возникли первые органические вещества?

Жизнь ставит эксперименты

Газы, образовывавшие раннюю атмосферу Земли, постепенно растворялись в Мировом океане, и в нем возник своего рода "теплый суп" из химических соединений. Поскольку в атмосфере не было кислорода, в ней отсутствовал озоновый слой (озон - разновидность кислорода), который мог бы защитить земную поверхность от вредоносного ультрафиолетового солнечного излучения.
В 20-е гг. XX в. русский ученый Александр Опарин и английский ученый Джон Холдейн выдвинули гипотезу, согласно которой многие миллионы лет это излучение,
совместно с разрядами молний, создавало в химическом "бульоне" все более и более сложные химические соединения, пока наконец не возникло одно органическое соединение - ДНК, способное воспроизводить самое себя.
В 50-е гг. XX в. американский химик Стенли Миллер решил проверить эту гипотезу. Он смешал метан и аммиак над поверхностью теплой воды и пропустил через них электрический ток, создав что-то наподобие молнии. Миллер повторил этот эксперимент многократно, меняя состав газовой смеси и температурный режим. В нескольких случаях он обнаружил, что всего через 24 часа примерно половина углерода, содержавшегося в метане, превратилась в органические соединения типа аминокислот. Значит, можно сделать вывод, что при достаточном времени и соответствующем составе газовой смеси точно так же могли образовываться и более сложные химические соединения, возможно, даже те из них, что входят в состав ДНК.

Первые живые клетки

Химический "бульон" в первобытном океане становился все гуще, и в нем формировались все новые и новые соединения. Некоторые из них образовывали на поверхности воды тонкие сплошные пленки - наподобие пленки из разлившейся на море нефти. Вода перемешивалась, например во время шторма, и пленка разрывалась на отдельные сферические образования, похожие на нефтяные шарики. Внутри них оказывались отдельные химические соединения, которые начинали походить на настоящие живые клетки. Стоило только молекулам ДНК сформироваться в "бульоне" и очутиться вместе с прочими веществами внутри такой оболочки, как это положило начало жизни на Земле.
Первые клетки во многом напоминали современные бактерии. Необходимую энергию они вырабатывали, расщепляя неорганические соединения. Клетки могли извлекать углерод из метана, а также из окиси и двуокиси углерода, растворенных в воде.
Из сероводорода и прочих содержавших его соединений они извлекали водород. Все эти элементы клетки использовали для воспроизводства новой живой материи. Подобные бактерии в наше время встречаются вокруг горячих минеральных источников и действующих вулканов.


Примитивные формы бактерий и цианей (синезеленых водорослей) и по сей день в изобилии встречаются в горячих минеральных источниках. Некоторые из них используют минеральные вещества из этих источников как "сырье" для фотосинтеза.
Ученые полагают, что жизнь могла зародиться в аналогичной среде. В нижней части рисунка, если присмотреться внимательнее, можно различить двух человек на дорожке подле источника.

Укрощая энергию Солнца.

Следующий важнейший этап в эволюционном процессе - укрощение солнечной энергии живой материей. Вместо того чтобы извлекать энергию из неорганических соединений, клетки стали использовать непосредственно энергию солнечных лучей.
Это положило начало фотосинтезу, особому процессу, в ходе которого растения синтезируют питательные вещества при помощи энергии солнечного света. Л вместо того чтобы добывать нужный клеткам водород из таких веществ, как сероводород, они научились извлекать его из куда более распространенной субстанции - воды.

Фотосинтез: громадный скачок эволюции

Растения, водоросли и некоторые виды бактерий "захватывают" солнечный свет при помощи окрашенных химических соединений, содержащихся в клетках, - так называемых пигментов. Эту световую энергию они используют для синтеза всех органических соединений, необходимых им для роста и размножения. Такой процесс называют фотосинтезом, что означает "создание с помощью света". Чтобы из простых химических веществ, например воды или углекислого газа, создать сложные соединения, скажем сахарозу или протеины, встречающиеся в живых клетках, нужно затратить определенное количество энергии. Во многом это напоминает возведение стены: чтобы поднимать кирпичи на верхушку стены и закреплять их на положенном месте, вам необходима энергия. При фотосинтезе эта энергия поступает из солнечного света. Углекислый газ (содержащий углерод и кислород) и вода (состоящая из водорода и кислорода) дают углерод, кислород и водород. Из них синтезируются сахароза и прочие органические соединения, вырабатываемые в ходе фотосинтеза. При этом расходуется не весь кислород часть его выбрасывается в атмосферу.
Чтобы улавливать солнечные лучи, эти новые фотосинтезирующие клетки вырабатывали пигменты - окрашенные вещества, способные поглощать свет. До того времени жизнь па Земле была тусклой и бесцветной. Теперь же она заиграла многоцветьем новых красок. Отныне живые организмы перестали быть привязанными к местам с особо энергоемкими веществами: вода и солнечный свет оказались гораздо более доступными источниками энергии.
Новые фотосинтезаторы обитали в основном в минеральных источниках и теплых прибрежных водах морей, где было достаточно мелко для того, чтобы до них доходил солнечный свет, и в то же время достаточно глубоко, чтобы предохранять их от губительного воздействия ультрафиолетового излучения. Некоторые из клеток продолжали выделять водород из сероводорода; их потомки и по сей день встречаются подле горячих минеральных источников.


Живые строматолиты в заливе Шарк, Австралия. Поскольку в строматолитах происходит фотосинтез, они извлекают из воды растворенный в ней углекислый газ. При этом из раствора выделяется карбонат кальция (известь). Клейкая слизь, вырабатываемая строматолитами, захватывает крохотные частицы извести, и в итоге образуются слои известняка.
Изображение ископаемого строматолита в разрезе, на котором хорошо видны слои известняка и цианобактерий.

Эпоха строматолитов.

Одни из самых ранних фотосинтезирующих организмов, дошедших до нас в ископаемом виде, - строматолиты (см. также с. 34). Эти странные структуры кажутся на первый взгляд состоящими из множества известняковых колец, разделенных тонкими коническими прослойками. На самом же деле их образовали примитивные организмы, похожие на простейших циансоактерий, которых иногда называют сине-зелеными водорослями. Строматолиты отличались невероятным разнообразием форм и размеров. Одни были круглые, как картофелины, другие конусообразной формы, третьи - высокие и тонкие или даже ветвистые.
Окаменевшие строматолиты встречаются по всему миру. Во многих местах они образуют громадные рифы, зачастую поднимающиеся с морского дна на сотни метров сквозь толщу прозрачной воды, подобно современным коралловым рифам в тропиках. Древнейшие ископаемые строматолиты были обнаружены в Западной Австралии, в горных породах возрастом 2,8 млрд лет. Однако неопознанные структуры, которые, по мнению ученых, также могли бы оказаться окаменевшими строматолитами, встречаются даже в породах возрастом не менее 3,5 млрд лет. Живые строматолиты обитают на Земле и в наши дни. Они, как и их далекие предки, предпочитают теплое мелководье. Однако нынешний ареал строматолитов ограничен лишь теми местами, где мало питающихся ими животных.

Красноцветные отложения

Некоторые из древнейших окаменслостей, в том числе многие строматолиты, встречаются в горных породах, именуемых сланцами, что нехарактерно для осадочных пород более поздних эпох. Это долго ставило в тупик геологов, пока до них наконец не дошло, что формирование подобных слоев связано с жизнедеятельностью строматолитов. Постепенно концентрация кислорода в океанах увеличивалась, и он начал вступать в химические реакции с растворенным и воде железом. Образовались
кон" с собственной оболочкой - так называемых органелл. В каждом отсеке была особая внутренняя среда, поэтому в разных частях клетки отныне происходили различные процессы. Теперь химические реакции в клетках стали протекать намного эффективнее. ДНК- вещество, содержащее генетический код, - упорядочилась в специальные структуры - хромосомы. Ученые полагают, что эти новые клетки образовались, когда аэробные клетки стали проникать внутрь других клеток - возможно, для защиты от новых "хищных" клеток. При этом новые клетки делились друг с другом энергией и вырабатываемыми химическими соединениями.
соединения из железа и кислорода - так называемые окислы железа. Они не могли растворяться в воде и оседали на дно вместе с прочими осадками.
Примерно 2,2 млрд лет назад на суше также начали формироваться осадочные породы нового типа - так называемые красноцветные отложения. Эти породы содержали большое количество окислов железа, что придавало им красноватый оттенок цвета ржавчины". Значит, к тому времени кислород появился и в атмосфере. Все железо в океане было уже связано, и избыток кислорода попадал в атмосферу в виде газа.

Отравленные кислородом

На протяжении всего докембрия концентрация кислорода в атмосфере Земли постоянно возрастала. Однако многим живым организмам того времени это не принесло ничего хорошего. Для них это было равносильно грандиозному атмосферному загрязнению. Ведь первые живые организмы возникли в бескислородной среде, и кислород оказался для них смертельным ядом. Многие виды исчезли с лица Земли - это было первое великое вымирание в ее истории. Поистине неисповедимы пути эволюции: сегодня мы не мыслим жизни без кислорода, а для первых живых организмов кислород в атмосфере был смертелен.
В конечном итоге эволюция произвела на свет клетки, способные не просто вы-
жить в кислородной среде, но и обратить ее себе на благо. Ведь некоторые соединения, образующиеся при фотосинтезе, могут при помощи кислорода расщепляться, а выделяемая при этом энергия может использоваться для создания целого ряда новых соединений. В большинстве живых клеток и сейчас так протекает процесс дыхания. Ученые называют его аэробным типом дыхания ("аэробный" означает "использующий воздух"). В ходе этого процесса энергии высвобождается гораздо больше, чем при любых других процессах биораспада, происходящих без участия кислорода. Некоторые "дышащие" клетки даже приобрели способность поглощать другие клетки, используя их как пищу.


Самые первые клетки, так называемые прокариоты (слева), были крайне примитивны. Все содержавшиеся в них химические вещества, включая ДНК с генетическим кодом, были перемешаны и разбросаны по всей клетке. В более поздних - эукариотных - клетках (справа) имелись маленькие внутренние отделения с собственной оболочкой. Они содержали химические вещества для определенных реакций, причем в каждом из них была именно та среда, которая необходима для наиболее быстрого течения данной реакции. ДНК была сосредоточена в хромосомах, находящихся внутри клеточного ядра, окруженного ядерной оболочкой. Ядро управляло всей жизнедеятельностью клетки.
Готовя сцену для эволюции.

Кислород в атмосфере накапливался, и там начал формироваться озоновый слой, который поглощал вредоносное ультрафиолетовое излучение Солнца. Теперь жизнь смогла переместиться ближе к поверхности океанов и даже проникнуть во влажные прибрежные районы суши. Цианобак-терии также становились все сложнее. Они начали группироваться в комья и тонкие нити. И все же новые аэробные клетки, дышащие кислородом, постепенно брали верх.

Изменчивость - катализатор жизни

Что еще важнее, новые клетки стали размножаться совершенно иным способом. Вместо того чтобы попросту делиться пополам и образовывать две другие клетки - точные копии предыдущей, эти новые клетки начали проделывать нечто странное. Две клетки сливались в одну, обменивались частью своих ДНК, а затем вновь делились на две или более новых клеток. Это называется половым размножением. Новые клетки отныне обладали смешанной ДНК от обоих своих родителей. Половое размножение привело к резкому возрастанию изменчивости среди клеток, что, в свою очередь, дало мощный толчок эволюционному процессу.

Первое великое вымирание

Поздний докембрий ознаменовался грандиозными природными катаклизмами. Они сопровождались многочисленными извержениями вулканов, землетрясениями и горообразовательными процессами. Огромное количество вулканического пепла, выброшенного в атмосферу, привело к охлаждению климата; громадные массивы суши надвинулись на полюс, и по всему земному шару расползлись гигантские ледниковые покровы.
В этот период вымерли очень многие виды древних организмов. В конце концов льды начали таять, уровень океана постепенно повышался, и вода затопила прибрежные районы материков. Для существ, обитавших на мелководье, открылись новые, еще не занятые угодья с неограниченными возможностями ведения специализированного образа жизни. К этому времени поверхности Земли достигало намного меньше опасного ультрафиолетового излучения Солнца, чем прежде, поскольку оно не могло преодолеть сгустившийся озоновый слой. Кроме того, кислорода в атмосфере теперь было больше, что вполне устраивало новое поколение живых организмов.


Сегодня в верхних слоях Мирового океана обитает великое множество самых разнообразных одноклеточных организмов. Многие из них, должно быть, очень похожи на те, что населяли моря докембрийской эпохи. Вверху: Перед вами микроскопические стекловидные скелеты радиолярий - одноклеточных животных с длинными тонкими отростками, покрытыми клейкой слизью, с помощью которых они ловили добычу- крохотные организмы. Внизу: Известковые многокамерные раковины фораминиферов - важные руководящие ископаемые. Эти раковины образуют основу некоторых видов известняка. Подобно радиоляриям, одноклеточные фораминиферы имели длинные клейкие отростки для ловли добычи.
Тайна многоклеточных.

Никто толком не знает, как именно возникли первые многоклеточные животные. Возможно, в какой-то момент разделившиеся клетки перестали полностью отделяться друг от друга. Или, напротив, различные клетки начали объединяться и самоорганизовываться. На первый взгляд это кажется невероятным, но не спешите с выводами. В 1907 г. биолог X. Дж. Уилсон провел ряд экспериментов с губками. Он разрезал красную губку на мелкие кусочки и стал пропускать их через специальную установку, дабы отделить клетки друг от друга - пока наконец не получил осадок красного цвета в графине с водой. К немалому его удивлению, за считанные часы клетки вновь сгруппировались в единое целое. Затем они постепенно начали самоорганизовываться в новую губку, формируя камеры, каналы и ветвистые трубочки. Спустя неделю губка была как новенькая. Возможно, именно так и образовались первые многоклеточные животные.
Ныне существуют и такие странные создания, как слизевики, или миксомице-ты. Они похожи на ярко окрашенные комки слизи, ползущие по земле или по коре деревьев. Одна из разновидностей слизевиков, клеточные слизевики, большую часть своей жизни проводит в виде отдельных клеток, копошащихся в почве, где они кормятся бактериями. Но когда запас пищи иссякает, каждая клетка вырабатывает особое вещество, которое привлекает другие клетки слизевика. Миллионы таких клеток собираются вместе и образуют огромную клеточную массу, сильно смахивающую на многоклеточный организм. Эта масса передвигается и реагирует на свет и химические вещества, словно единое животное. В конечном итоге слизевик предстает в виде плодоносящего тела, во многом похожего на спорангий какого-либо гриба. У него имеется высокая ножка с защитной внешней оболочкой, а сверху располагается мешочек со спорами.

Отметины в иле

У этих ранних мягкотелых животных было мало шансов сохраниться в ископаемом виде. Однако они оставили в горных породах свои следы или, точнее, отпечатки. Ямки, из которых мягкотелые добывали пищу, отпечатки тел и отметины в толще ила, где они отдыхали, обнаружили в горных породах, возраст которых 700 млн лет и более. Впрочем, в отложениях, вплоть до тех, возраст которых 640 млн лет, такие следы попадаются крайне редко. К этом периоду как раз подошло к концу оледенение позднего докембрия и сформировались условия для нового грандиозного эволюционного взрыва.


Одно существо или множество организмов? В ответ на химический "сигнал" миллионы амебообразных клеток слизевика собираются вместе, образуя движущуюся пленку, которая в конечном итоге выделяет из себя споровые капсулы на длинных ножках, во многом напоминающие простейшие грибы.
Животные Эдиакар.

В отдаленной части Южной Австралии, в Эдиакарских горах, встречаются древние мелководные и береговые осадочные породы, возраст которых 640 млн лет. Здесь сохранилось множество ископаемых останков животных докембрийской эпохи. В этих породах обнаружено по меньшей мере 30 различных родов многоклеточных организмов; следует заметить, что схожие скопления окаменелостей встречаются в горных породах того же возраста во многих местах по всему земному шару.
Животные Эдиакар жили преимущественно на морском дне. Они кормились в слое органического вещества (детрита), который покрывал донный ил, образованный останками множества одноклеточных организмов, населявших толщу воды над ними. Плоские и кольчатые черви плавали над самым дном или ползали среди осадков. Спешить им было некуда, ибо хищников (животных, питающихся другими животными) здесь было очень мало.
Морские перья поднимались с морского дна, подобно неким перообразным цветкам, тщательно отфильтровывая воду в поисках пищи. Трубчатые черви лежали среди донных отложений, шевеля своими щупальцами в насыщенной детритом воде. Примитивные иглокожие, родичи современных морских звезд и морских ежей, всю свою жизнь проводили в толстом слое ила. Было там и множество крупных плоских животных в форме блина; эти похожие на медуз создания также, судя по всему, обитали на илистом дне. А над ними в морской воде медленно проплывали настоящие медузы.

Предвестники будущего

В Эдиакарских отложениях встречаются многочисленные окаменевшие отпечатки мягкотелых животных, ползавших когда-то по морскому дну. В некоторых местах в иле запечатлелись парные V-образные отметины, похожие па царапины, оставленные парами крохотных ножек. Возможно, это следы примитивных артропод, или членистоногих, - отдаленных предков ископаемых трилобитов, а также современных нам насекомых - пауков и скорпионов. Правда, твердых останков этих животных пока не обнаружено: по всей видимости, они еще не обзавелись твердым панцирем.


Все животные Эдиакар были мягкотелыми. Там обитало множество разновидностей медуз (1). Диксонии (2) и сприггины (3) были плоскими червеобразными существами. Сприггина имела вдоль боков множество крохотных плавательных пластинок, как у современных морских червей. Возможно, это животное- предок трилобитов. Харниодиск (4), ранге" (5) и птеридиний, листообразные морские перья были колониями крохотных животных, похожих на гидр, которые отфильтровывали из воды частицы пищи. А вот трибрахидий (7) для нас полная загадка. У него был Y-образный центральный рот с щетинкообразными отростками. Возможно, он - предок современных иглокожих.

На докембрий приходится большая часть геологической истории Земли - около 3,8 млрд лет или около 90 % длительности геологической истории Земли .

Первоначально докембрий называли азойской (безжизненной) эрой , но именно в это время возникла и развилась растительная и животная жизнь на Земле .

Интенсивное изучение геологической истории докембрия началось в конце XX века, в связи с появлением мощных методов изотопной геохронологии .

Стратиграфическое деление докембрия было предметом многочисленных споров. С 1978 года в СССР докембрий делили на протерозой и архей . В 1990-х годах Стратиграфической комиссией была принята единая временная шкала докембрия, однако она вызывает много споров.

При более дифференцированном подходе образование и дрейф континентов докембрия описывается следующим образом. В начале был континент Ваальбара , потом после первого оледенения (2,9-2,7 млрд лет назад) он раскололся на Ур , Нуна и Атлантику . Затем континенты вновь сошлись в Родинию (в период от 1 млрд до 750 млн лет назад). В этот период Земля пережила второе оледенение . После суперконтинент распался на прото-Лавразию и прото-Гондвану . В конце эпохи докембрия на Земле вновь существовал один континент Паннотия .

Органическая жизнь была сосредоточена в прибрежной мелководной, хорошо освещённой, экологически оптимальной полосе морей. В этих условиях значительное развитие получили строматолиты (продукт жизнедеятельности бактерий), некоторые виды водорослей (Grypania spiralis) и беспозвоночных животных (цикломедузы). Докембрийские массивы суши, лишённые растительности, возвышались над морскими пространствами в виде оголённых, обширных скалистых островов

Органический мир

Органические остатки в архейских отложениях почти не встречаются, однако из этого не следует, что животные и растения в архейской эре вообще не существовали. Считается, что в архее, по крайней мере в завершающие периоды, на земном шаре уже обитали одноклеточные , а возможно даже и многоклеточные организмы, не имевшие минерального скелета , который мог бы сохраниться в ископаемом состоянии до наших дней.

В протерозойских отложениях органические остатки встречаются намного чаще, чем в архейских. Они представлены известковыми выделениями сине-зелёных водорослей , ходами червей , остатками кишечнополостных . Кроме известковых водорослей, к числу древнейших растительных остатков относятся скопления графито-углистого вещества, образовавшегося в результате разложения Corycium enigmaticum . В кремнистых сланцах железорудной формации Канады найдены нитевидные водоросли , грибные нити и формы, близкие современным кокколитофоридам . В железистых кварцитах Северной Америки и Сибири обнаружены железистые продукты жизнедеятельности бактерий .

Учёные-докембристы

В течение длительного времени единственным в мире специализированным научным учреждением по изучению докембрия был созданный в Ленинграде в 1967 году на базе Лаборатории геологии и геохронологии докембрия АН СССР (ИГГД). Основателями института, чьи исследования легли в основу изучения докембрия, были А. А. Полканов , Э. К. Герлинг , С. В. Обручев , Н. А. Елисеев , В. А. Николаев , Н. Г. Судовиков , К. О. Кратц , Д. А. Тимофеев .

Также ведущая роль в выделении и разработке стратиграфии рифея и венда принадлежит советским учёным-академикам Н. С. Шатскому , Б. С. Соколову и другим.

См. также

Напишите отзыв о статье "Докембрий"

Литература

  • Стратиграфия и корреляция докембрия. М.-Л., 1960.
  • Стратиграфия позднего докембрия и кембрия. М., 1960.
  • Михайлов Д. Зал ученого совета. Выдающиеся ученые докембристы. СПб., 2006. - 242 с.
  • Иорданский Н. Н. Развитие жизни на земле. - М .: Просвещение, 1981.
  • Короновский Н.В., Хаин В.Е., Ясаманов Н.А. Историческая геология: Учебник. - М .: Академия, 2006.
  • Ушаков С.А., Ясаманов Н.А. Дрейф материков и климаты Земли. - М .: Мысль, 1984.
  • Ясаманов Н.А. Древние климаты Земли. - Л. : Гидрометеоиздат, 1985.
  • Ясаманов Н.А. Популярная палеогеография. - М .: Мысль, 1985.

Примечания

Ссылки

  • Докембрий // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.

Отрывок, характеризующий Докембрий

– Хотите ли вы этого также? – мягко спросила у женщины я.
Она лишь грустно кивнула и опять намертво замкнулась в своём скорбном мире, не пуская туда никого, включая и так беспокоившуюся за неё маленькую дочь.
– Папа хороший, он просто не знает, что мы ещё живём. – Тихо сказала девочка. – Пожалуйста, ты скажи ему…
Наверное, нет ничего страшнее на свете, чем чувствовать на себе такую вину, какую чувствовала она... Её звали Кристина. При жизни она была жизнерадостной и очень счастливой женщиной, которой, во время её гибели, было всего лишь двадцать шесть лет. Муж её обожал…
Её маленькую дочурку звали Вэста, и она была первым в этой счастливой семье ребёнком, которого обожали все, а отец просто не чаял в ней души…
Самого же главу семьи звали Артур, и он был таким же весёлым, жизнерадостным человеком, каким до смерти была его жена. И вот теперь никто и ничто не могло ему помочь найти хоть какой-то покой в его истерзанной болью душе. И он растил в себе ненависть к любимому человеку, своей жене, пытаясь этим оградить своё сердце от полного крушения.
– Пожалуйста, если ты пойдёшь к папе, не пугайся его… Он иногда бывает странным, но это когда он «не настоящий». – Прошептала девочка. И чувствовалось, что ей неприятно было об этом говорить.
Я не хотела спрашивать и этим ещё больше её огорчать, поэтому решила, что разберусь сама.
Я спросила у Вэсты, кто из них хочет мне показать, где они жили до своей гибели, и живёт ли там всё ещё её отец? Место, которое они назвали, меня чуть огорчило, так как это было довольно-таки далеко от моего дома, и чтобы добраться туда, требовалось немало времени. Поэтому так сразу я не могла ничего придумать и спросила моих новых знакомых, смогут ли они появиться вновь хотя бы через несколько дней? И получив утвердительный ответ, «железно» им пообещала, что обязательно встречусь за это время с их мужем и отцом.
Вэста лукаво на меня глянула и сказала:
– Если папа не захочет тебя сразу выслушать, ты скажи ему, что его «лисёнок» очень по нему скучает. Так папа называл меня только, когда мы были с ним одни, и кроме него этого не знает больше никто...
Её лукавое личико вдруг стало очень печальным, видимо вспомнив что-то очень ей дорогое, и она вправду стала чем-то похожа на маленького лисёнка…
– Хорошо, если он мне не поверит – я ему это скажу. – Пообещала я.
Фигуры, мягко мерцая, исчезли. А я всё сидела на своём стуле, напряжённо пытаясь сообразить, как же мне выиграть у моих домашних хотя бы два-три свободных часа, чтобы иметь возможность сдержать данное слово и посетить разочарованного жизнью отца...
В то время «два-три часа» вне дома было для меня довольно-таки длинным промежутком времени, за который мне стопроцентно пришлось бы отчитываться перед бабушкой или мамой. А, так как врать у меня никогда не получалось, то надо было срочно придумать какой-то реальный повод для ухода из дома на такое длительное время.
Подвести моих новых гостей я никоим образом не могла...
На следующий день была пятница, и моя бабушка, как обычно собиралась на рынок, что она делала почти каждую неделю, хотя, если честно, большой надобности в этом не было, так как очень многие фрукты и овощи росли в нашем саду, а остальными продуктами обычно были битком набиты все ближайшие продовольственные магазины. Поэтому, такой еженедельный «поход» на рынок наверняка был просто-напросто символичным – бабушка иногда любила просто «проветриться», встречаясь со своими друзьями и знакомыми, а также принести всем нам с рынка что-то «особенно вкусненькое» на выходные дни.
Я долго крутилась вокруг неё, ничего не в силах придумать, как бабушка вдруг спокойно спросила:
– Ну и что тебе не сидится, или приспичило что?..
– Мне уйти надо! – обрадовавшись неожиданной помощи, выпалила я. – Надолго.
– Для других или для себя? – прищурившись спросила бабушка.
– Для других, и мне очень надо, я слово дала!
Бабушка, как всегда, изучающе на меня посмотрела (мало кто любил этот её взгляд – казалось, что она заглядывает прямо тебе в душу) и наконец сказала:
– К обеду чтобы была дома, не позже. Этого достаточно?
Я только кивнула, чуть не подпрыгивая от радости. Не думала, что всё обойдётся так легко. Бабушка часто меня по-настоящему удивляла – казалось, она всегда знала, когда дело было серьёзно, а когда был просто каприз, и обычно, по-возможности, всегда мне помогала. Я была очень ей благодарна за её веру в меня и мои странноватые поступки. Иногда я даже была почти что уверена, что она точно знала, что я делала и куда шла… Хотя, может и вправду знала, только я никогда её об этом не спрашивала?..
Мы вышли из дома вместе, как будто я тоже собиралась идти с ней на рынок, а за первым же поворотом дружно расстались, и каждая уже пошла своей дорогой и по своим делам…
Дом, в котором всё ещё жил отец маленькой Вэсты был в первом у нас строящемся «новом районе» (так называли первые многоэтажки) и находился от нас примерно в сорока минутах быстрой ходьбы. Ходить я очень любила всегда, и это не доставляло мне никаких неудобств. Только я очень не любила сам этот новый район, потому что дома в нём строились, как спичечные коробки – все одинаковые и безликие. И так как место это только-только ещё начинало застраиваться, то в нём не было ни одного дерева или любой какой-нибудь «зелени», и оно было похожим на каменно-асфальтовый макет какого-то уродливого, ненастоящего городка. Всё было холодным и бездушным, и чувствовала я себя там всегда очень плохо – казалось, там мне просто не было чем дышать...
И ещё, найти номера домов, даже при самом большом желании, там было почти что невозможно. Как, например, в тот момент я стояла между домами № 2 и № 26, и никак не могла понять, как же такое может быть?!. И гадала, где же мой «пропавший» дом № 12?.. В этом не было никакой логики, и я никак не могла понять, как люди в таком хаосе могут жить?
Наконец-то с чужой помощью мне удалось каким-то образом найти нужный дом, и я уже стояла у закрытой двери, гадая, как же встретит меня этот совершенно мне незнакомый человек?..
Я встречала таким же образом много чужих, неизвестных мне людей, и это всегда вначале требовало большого нервного напряжения. Я никогда не чувствовала себя комфортно, врываясь в чью то частную жизнь, поэтому, каждый такой «поход» всегда казался мне чуточку сумасшедшим. И ещё я прекрасно понимала, как дико это должно было звучать для тех, кто буквально только что потерял родного им человека, а какая-то маленькая девочка вдруг вторгалась в их жизнь, и заявляла, что может помочь им поговорить с умершей женой, сестрой, сыном, матерью, отцом… Согласитесь – это должно было звучать для них абсолютно и полностью ненормально! И, если честно, я до сих пор не могу понять, почему эти люди слушали меня вообще?!.
Так и сейчас я стояла у незнакомой двери, не решаясь позвонить и не представляя, что меня за ней ждёт. Но тут же вспомнив Кристину и Вэсту и мысленно обругав себя за свою трусость, я усилием воли заставила себя поднять чуть дрожавшую руку и нажать кнопку звонка…
За дверью очень долго никто не отвечал. Я уже собралась было уйти, как дверь внезапно рывком распахнулась, и на пороге появился, видимо бывший когда-то красивым, молодой мужчина. Сейчас, к сожалению, впечатление от него было скорее неприятное, потому, что он был попросту очень сильно пьян…

Докембрий, докембрийский период или криптозой — первая часть геологической истории Земли. Докембрий — это общее название сразу трёх эонов истории Земли — (4,6-4,0 млрд. лет назад), (4,0 до 2,5 млрд. лет назад) и (2,5 млрд. до 541 млн лет назад). Таким образом, Докембрий охватывает большую часть истории Земли (4,6 млрд. лет назад — 541 млн лет назад, или 90% всей геологической истории Земли). Докембрий, состоящий из трёх эонов, предшествует последнему эону — — который продолжается и сегодня.

Докембрий — это период становления Земли, период первоначального развития земной коры, становления атмосферы и первый период развития жизни . Учёные распределили периоды — Докембрий и Фанерозой — таким образом, что докембрийский период заканчивается с началом эры и Кембрийским периодом. Кембрийский период известен таким удивительным явлением, как « », когда на планете появилась масса живых организмов. Огромное разнообразие развитых форм живых организмов в кембрийском периоде до сих пор вызывает жаркие споры учёных, однако об этом можно будет узнать в одной из последующих статей.

Смысл такого распределения геологических периодов в истории Земли заключается в том, что Докембрий или Криптозой (криптозой — с древнегреческого «скрытная жизнь») — это период становления Земли, когда жизнь только-только начинала развиваться, и заканчивается он в тот период, который известен всем палеонтологам, как начало богатых залежей ископаемых живых организмов. С этого момента начинается Фанерозой (с древнегреческого — явная жизнь).

Изначально докембрийский период или криптозой называли азойской эрой, то есть эрой без жизни, первой эрой истории планеты, когда жизни не было. Однако последующие исследования позволили выяснить, что азойская эра была заселена живыми организмами, хоть и не в такой степени, как в последующий фанерозой. Первая жизнь появилась уже в самом начале Архея, 3,7 миллиарда лет назад, после чего называть данный период азойским стало нецелесообразно, и у него появились новые названия — Докембрий (то есть период до Кембрия или кембрийского взрыва жизни) или Криптозой (скрытная жизнь).

История Земли документальный фильм:

Хотите покупать авиабилеты быстро, удобно и выгодно? В этом случае вам стоит знать, что авиабилеты в Туле купить можно на сайте «Business Travel». Выбирайте направление, даты, количество пассажиров и делайте заказ.

Термин "докембрий" очень удобен тем, что охватывает весь период геологической истории Земли с тех пор, когда на ней начали происходить геологические процессы, и до начала кембрия. Этот отрезок времени в разных источниках оценивается по-разному, но расхождения небольшие. Начало докембрия - примерно 4,0 млрд. лет, окончание - 570 млн. лет. Иногда докембрий называ-ли азоем ("безжизненный"), криптозоем ("скрытая жизнь"), подчеркивая этими названиями отсут-ствие жизни или развитие лишь простейших форм организмов в докембрийские эры. В настоящее время установлено, что оба эти названия оказываются неверными, поскольку низшие биологичес-кие формы появились практически одновременно с древнейшими проявлениями осадконакопления, а в позднем докембрии кроме низших существовали сравнительно высокоорганизованные формы. К рифейским и вендским отложениям в принципе можно применить биостратиграфичес-кий метод (при более совершенной его разработке). Этому способствовали многочисленные на-ходки строматолитов в рифейских отложениях и бесскелетной фауны эдиакарского типа в венде. Таким образом, поздний протерозой нельзя уже относить и к криптозою, поскольку жизнь там су-ществовала в явной, а не скрытой, микроскопической, форме.

Докембрийский промежуток времени составляет 7/8 истории Земли. В это время зародилась жизнь, радикально преобразовалась земная кора и заложились ее главные структуры, образова-лась большая часть (свыше 60%) минеральных ресурсов. Однако изучен докембрий относительно слабо и тому есть объективные причины. Дело прежде всего в сильной дислоцированности докембрийских пород и высокой степени их метаморфизма.

Главный вид метаморфизма в докембрии - региональный, происходящий при высоких темпе-ратурах и давлении. В большинстве случаев соблюдается следующая закономерность: чем старше породы, тем сильнее они метаморфизованы. Древнейшие породы настолько сильно метаморфизованы, что бывает весьма трудно, а порой и невозможно определить, за счет каких пород - осадоч-ных или изверженных - они возникли. Широко распространенные в докембрийских образованиях процессы метасоматоза, гранитизации привели к формированию мигматитов - своеобразных по-род полосчатой текстуры, а то и к полной метасоматической переработке исходных пород и пре-вращению их в граниты. Эти процессы шли, как правило, с интенсивным привносом и выносом элементов и соединений горячими паро-водными растворами. Мигматиты и граниты слагают об-ширные гранитогнейсовые поля.

Другая отличительная особенность докембрийских пород - сильная их дислоцированность, наличие сложных складок многих порядков. Среди докембрийских образований по характеру тек-тоники можно выделить ряд структурных этажей, свидетельствующих о проявлении в докембрии целого ряда эпох складчатости. Исследователям приходится мириться с приблизительностью и неточностью расчленения и корреляции докембрийских образований по степени метаморфизма, глубине магматической и тектонической переработки, петрографическим особенностям пород, поскольку к докембрию невозможно в полной мере применить биостратиграфический метод. Радиалогические методы также имеют большие ограничения, связанные с сильным искажением да-тировок под влиянием упомянутых выше вторичных изменений, "омолаживающих" древнейшие породы. Наиболее подходящим для расчленения докембрия является геоисторический метод, применяемый совместно с радиогеохронологическим.

Своеобразие условий в докембрии привело к формированию пород, характерных только для этого времени. Примером могут служить джеспилиты - железистые кварциты, состоящие из поло-сок, сложенных преимущественно кварцитом и гематитом (либо магнетитом). Джеспилиты в ос-новном приурочены к протерозойским толщам; образовались они при участии микроорганизмов.

Докембрий расчленен на крупные стратиграфические единицы, границы между которыми со-впадают с проявлениями диастрофизма. Наиболее общее подразделение докембрия было осуществлено в конце XIX в. Американский геолог Дж.Дэна назвал в 1872 г. самые древние образова-ния архейскими (греч. архэос - древний). Но с находками остатков бактерий и цианобионтов архей можно называть также археозой (греч. архэос - древний, зоэ - жизнь). Последний термин тоже принадлежит Дж.Дэну. Э.Эммонс и Д.Уолкотт в 1888 г. выделили верхнюю часть этих древ-нейших толщ, содержавшую остатки: жизнедеятельности организмов, под именем протерозойских (греч. протерос - первичный, зоэ - жизнь).

Эти подразделения долгое время существовали в ранге эр (групп), но после того, как выяви-лась их значительно большая продолжительность (около 2 млрд. лет каждое) по сравнению с эра-ми фанерозоя, потребовалось ввести новые, более крупные геохроны (стратоны). В ныне действу-ющем стратиграфическом кодексе (1992) архей и протерозой имеют ранг акронов (акротем), деля-щихся каждый на два зона - ранний и поздний, которые в стратиграфической шкале соответству-ют эонотемам - нижней и верхней. Нижне- и верхнеархейская эонотемы не име-ют более дробных подразделений в международной стратиграфической шкале, а нижний протеро-зой делится на две эратемы - нижнюю и верхнюю. В России их называют нижний карелий и верх-ний карелий, поскольку наиболее представительные и хорошо изученные разрезы протерозоя на-ходятся в Карелии. Верхний протерозой подразделяется на рифей и венд. Ранг рифея не совсем ясен, а венд - это период (система). Рифей делится на три эратемы (эры): нижнерифейскую, сред-нерифейскую и верхнерифейскую.

Жизнь зародилась в раннем архее и была первоначально представлена прокариотами - одно-клеточными организмами, не имеющими ядра. К ним относятся бактерии и цианобионты (сине-зеленые водоросли). Последние сыграли решающую роль в формировании кислородной атмосфе-ры. Как указывает М.Руттен (1973), содержание кислорода, продуцируемого неорганическим пу-тем, не может подняться-выше 0,001 епГсовременного содержания в атмосфере. Это так называе-мый "уровень Юри". Фотосинтез содержащих хлорофилл цианобионтов примерно 3 млрд. лет на-зад стал настолько распространенным, что содержание кислорода в атмосфере росло быстрее, чем его потери при окислении минералов земной коры. Таким образом уровень Юри был преодолен. Но такая атмосфера считается еще бескислородной. Кислородная атмосфера должна содержать не менее 0,01 от современного уровня кислорода, принятого за 1 (или не менее 1%). Это - "уровень Пастера". К среднему рифею (1,3 млрд. лет назад) возникают первые грибы и водо-росли. В начале позднего рифея (около 1 млрд. лет назад) появляются в весьма заметном количестве эукариоты - одно- и многоклеточные организмы, клетки которых содержат ядро. Вен-дский период - это время массового появления бесскелетных животных - своеобразной фауны эдиакарского типа.

В продолжение архейского акрона земная кора была повсеместно весьма подвижной и прони-цаемой. Дифференциация на платформы и геосинклинали отсутствовала. Лишь в конце раннего архея режим приблизился к геосинклинальному. Для пород архея с возрастом древнее 2,8 млрд. лет характерны основной и ультраосновной вулканизм и гранитизация. В это время земная кора повсеместно находилась в эвгеосинклинальных условиях (пангеосинклинальная стадия, по В.В.Белоусову). Архейские толщи часто образуют гранитогнейсовые купола - округлые или удли-ненные в плане структуры, сложенные в ядре гранитами, а по периферии гранитогнейсами, миг-матитами и кристаллическими сланцами. Формирование таких структур связывается с пластичес-ким течением вещества.

В докембрии выделяется несколько крупных этапов геологического развития, разделенных глобальными диастрофическими циклами (эпохами складчатости, тектогенеза) первого порядка, которые имели место 3750-3500 (саамский), 2800-2600 (кеноранский, или беломорский), 2000-1900 (карельский), -1000 (гренвиллский) и 680-650 (катангский, или байкальский) млн. лет тому назад. Кроме того, выделяются диастрофические циклы второго и более низких порядков, о кото-рых будет сказано ниже.

В результате саамского тектогенеза сформировались обширные складчатые овалы, сложенные комплексами "серых гнейсов", т.е. в большинстве своем плагиогнейсов тоналитового, трондьемитового и гранодиоритового состава, подстилающих породы зеленокаменных архейских поясов.

Кеноранская складчатость, проявившаяся 2,8 млрд. лет назад в Южной Африке, привела к образованию здесь самого древнего на планете относительно жесткого участка - протоплатформы. Беломорская складчатость, проявившаяся примерно в это же время, также обусловила отми-рание протогеосинклинального режима на отдельных участках и превращение их в протоплатформы (Анабарский массив, Алданский щит и др.). Более поздние эпохи тектогенеза привели к увели-чению площади протоплатформ. Таким образом, начиная с конца архея (2,8 млрд. лет назад) мож-но говорить о протоплатформенной стадии развития земной коры. Между протоплатформами су-ществовали протогеосинклинали (предшествующие геосинклиналям), где господствовали хе же условия, что и в пангеосинклиналях.

Карельская складчатость в конце раннего протерозоя завершила новый цикл геосинклиналь-ного осадконакопления. Одним из ее следствий явилось отмирание геосинклинального режима на обширных площадях, образование первых крупных стабильных блоков - эпикарельских плат-форм, которые получились при слиянии протоплатформ после консолидации находившихся меж-ду ними протогеосинклиналей. В пределах этих территорий началось формирование типичного ллатформенного чехла.

Таким образом, к концу раннего протерозоя (завершение карельской складчатости) на значи-тельной части Восточной и Северной Европы образовалась Восточно-Европейская платформа, на большей части Средней Сибири - Сибирская платформа, на севере Китая и Корейском полуостро-ве - Китайско-Корейская и Таримская платформы, на юге Китая - Южно-Китайская платформа, на большей части полуострова Индостан - Индийская платформа, в центральной и западной час-тях Австралии - Австралийская платформа. В Африке и на Аравийском полуострове вы-деляются Северо-Африканская, Южно-Африканская и Аравийская платформы, на большей части Северной Америки - Северо-Американская платформа. Две платформы намечаются на большей части Южной Америки. Почти всю Антарктиду, за исключением ее западной части, занимает Ан-тарктическая платформа. Наряду с платформами существовали геосинклинали и геосинклиналь-ные пояса, отделявшие эпикарельские платформы друг от друга и отличавшиеся от протогеосинк-линалей линейными структурами.

Произошедшая в конце рифея и в венде байкальская складчатость привела к окончательной консолидации древних платформ. С докембрия существуют Северо-Американская, Восточно-Ев-ропейская, Сибирская, Китайская, Южно-Американская, Африкано-Аравийская, Индийская, Ав-стралийская, Антарктическая платформы. Предполагают, что последние пять южных платформ в палеозое составляли суперплатформу Гондвана.

Все время после байкальской складчатости можно назвать временем платформ и геосинкли-налей. Геосинклинальные условия господствовали в пределах следующих участков. Между Вос-точно-Европейской, Сибирской и Китайской платформами располагался Урало-Монгольский под-вижный (геосинклинальный) пояс. Между Северо-Американской и Восточно-Европейской плат-формами прослеживается Грампианская геосинклинальная область Северо-Атлантического под-вижного пояса, Северо-Американскую платформу окаймляли с севера Иннуитская геосинклиналь-ная область, с юго-востока Аппалачская геосинклиналь этого же пояса. Вокруг всей береговой ча-сти Тихого океана располагался громадный Тихоокеанский подвижный пояс с двумя ветвями - За-падно- и Восточно-Тихоокеанской геосинклинальными областями. Между Гондваной и платфор-мами Северного полушария располагался субширотный Средиземноморский подвижный пояс.

Среди докембрийских образований выделяются литолого-стратиграфические комплексы - ассоциации горных пород, отличающиеся литологическим своеобразием, отвечающие крупному этапу геологического развития территории и занимающие определенное стратиграфическое поло-жение, отделяясь от смежных по разрезу комплексов структурным или значительным стратигра-фическим несогласием. Комплекс - наиболее крупная единица местной стратиграфической шка-лы; он объединяет ряд серий или свит и имеет собственное название, образованное от названия стратотипической местности, либо наиболее типичной серии, входящей в его состав. С помощью комплексов крупные стратиграфические подразделения докембрия в ранге эонотем и эратем полу-чают более дробное расчленение.

В нижнем архее, согласно данным Л.И.Салопа (1982), выделяются следующие литолого--стратиграфические комплексы (снизу вверх): иенгрский, унгринский, федоровский, сутамский, слюдянский, исуанский (серия Исуа). В верхнем архее различают комплексы: коматиитовый, киватинский, тимискамингский, Модис.

В составе нижнекарельской эратемы выделяются шесть литостратиграфических комплексов (снизу вверх): доминион-рифский (тунгудско-надвоицкий), Витватерсранд, нижнеятулийский, вер-хнеятулийский (анимикийский), ладожский (трансваальский), вепский. В верхнекарельской эратеме, как и в более молодых образованиях, литостратиграфические комплексы не выделяются.

Докембрийские образования чрезвычайно богаты полезными ископаемыми. В докембрии сосредоточено свыше 70% запасов железа и хрома; 70% золота, урана, никеля; свыше 60% меди и марганца; 100% добычи мусковита и флогопита. Это обстоятельство определяет важное практи-ческое значение изучения докембрия.

АРХЕЙСКИЙ АКРОН (АРХЕЙСКАЯ АКРОТЁМА) - AR

Архейский акрон продолжался свыше 1,5 млрд. лет, хотя точно длительность его неизвестна и нижняя граница не установлена. Она определяется условно возрастом наиболее древних пород и может понизиться по мере получения новых данных, хотя вряд ли этот возраст, приближающийся сейчас к 4,2 млрд. лет, значительно изменится. Породы архея прослежены на щитах древних плат-форм. Возраст пород серии Исуа в Гренландии оценивается в 3.760-4.000 млн. лет (магнетитовые кварциты, тоналиты). Гранулито-гнейсы и чарнокиты канского комплекса Южно-Енисейского поднятия Сибирской платформы имеют возраст 4.100 млн. лет. По сообщению австралийских геологов на Международном геологическом конгрессе в Москве в 1984 г., гнейсы щита Йилгарн. Австралийской платформы имеют возраст 4.100-4.200 млрд. лет. Верхняя возрастная граница ар-хейского акрона проводится на уровне 2.500-2.600 млн. лет.

По принятой в России стратиграфической шкале докембрия (табл. 1, цв. вкл.) архей делите» на две части в ранге эонотем - нижний и верхний архей, которым соответствуют ранне- и поздне-архейские зоны.

РАННЕАРХЕЙСКИЙ ЭОН (НИЖНЕАРХЕЙСКАЯ ЭОНОТЕМА) - AR ,

Общая характеристика

Возрастная граница между ранне- и позднеархейским зонами проводится на уровне 3.150 млн. лет. Самые древние образования иногда называют "катархей" (от греч. ката - внизу, термин Я.Седерхольма, 1893), хотя объем этого стратона не определен и понимается по-разному.

Нижнеархейские образования, слагающие значительные участки фундамента древних плат-форм, являются зачатками континентальной коры и представлены разнообраз-ными глубоко метаморфизованными пара- и ортопородами. Наиболее древними из них являются так называемые "серые гнейсы". Это преимущественно гнейсы андезидацитового состава, а так-же амфиболиты, железистые кварциты и другие продукты метаморфизма как осадочных, так и магматических пород. Фации метаморфизма - гранулитовая, амфиболитовая.

Эти наиболее древние образования с возрастом, как правило, превышающим 3,5 млрд. лет, развиты на всех континентах. В Европе это Кольская серия Кольского п-ова, беломорская серия Карелии и др.; в Азии - алданская серия Алданского щита, анабарская серия Анабарского масси-ва, канский комплекс Канского выступа, зерендинская серия Казахстана, индостанскип комплекс Индии и др.; в Африке - "древние гнейсы" Свазиленда, гнейсо-гранулитовый комплекс Зимбабве и др.; в Северной Америке - гнейсо-гранулитовые комплексы Канадского щита; в Южной Амери-ке, Австралии, Антарктиде - древнейшие комплексы щитов.

Органический мир

О зарождении жизни и самых ранних этапах ее развития подробно говорилось в главе 5. По»-.видимому, уже ранее 3.500 млн. лет, в раннем архее, появились настоящие живые организмы -прокариоты (бактерии и цианобионты). Идентификация органических остатков в наиболее древних породах очень затруднена. В кремнистых сланцах группы Онвервахт надсерии Свазиленд (Южная Африка) и перекрывающей ее серии Фиг-Три с возрастом 3.500-3.100 млн. лет найдены микроорганизмы Eobacterium isolatum .

В породах серии Исуа в юго-западной Гренландии с возрастом около 3.800 млн. лет обнару-жены изолированные палочки длиной 0,45-0,7 мкм и диаметром 0,18-0,32 мкм с двухслойными оболочками, нитеподобные образования, микроскопические шаровидные, дисковидные и много-угольные оболочки одноклеточных прокариот (цианобионтов). Это наиболее древние па-леонтологические остатки. В первой половине архея прокариоты прошли сложный путь развития, так как уже в середине архея существовали два самостоятельных царства органического мира -бактерии и цианобионты (сине-зеленые водоросли). Эти первые обитатели Земли жили практи-чески в бескислородной среде, населяя мелководные водоемы на глубинах, скорее всего, от 10 до 50-60 м, поскольку для защиты от губительного ультрафиолетового излучения Солнца требовался -слой воды толщиной не менее 10 м.

Согласно схеме Л.И.Салопа (1982), в архейском акроне выделяются шесть диастрофизмов: готхобский второго порядка (-4000 млн. лет), саамский первого порядка (3750-3500 млн. лет), бе-лингвийский, свазилендский, барбертонский второго-третьего порядков (в позднем архее) и кено-ранский (беломорский) первого порядка (2800-2600 млн. лет). Все эти циклы диастрофизма вклю-чали складчатые деформации, интенсивный и разнообразный магматизм, мигматизацию, гранити-зацию и другие процессы.

По характеру тектонического режима Л.И.Салоп предложил называть ранний архей пермо-бильным эоном (лат. per - сплошь, mobilis - подвижность). По другим авторам, это нуклеарная или пангеосинклинальная стадия в истории Земли.

Наиболее характерными элементами структуры раннего архея являются обширные "складча-тые овалы" размером до 600-800 км в поперечнике и расположенные между ними "межовальные поля" - сочетание куполов и мульд. В создании этих структурных форм основное значение имели вертикальные движения. К центральным частям овалов приурочены обширные поля гранитоидов. Характерна центростремительная вергенция складок на крыльях овалов. Последние расположе-ны не упорядоченно, что свидетельствует об отсутствии направляющей рамы - кратонных блоков, платформ. Не меньшие по размерам структурные формы - гранитогнейсовые купола.

Тектонический режим раннего архея характеризуется следующими чертами:

Отсутствием дифференциации земной коры на платформы и геосинклинали;
- отсутствием контрастного рельефа и грубообломочных отложений;

Однообразием супракрустальных пород (лат. supra - сверху, вверху, crusta - кора) на всех
континентах - признак "Панталассы", общепланетарного океана;

Широкоим распространением анортозитов - признак спокойной тектонической обстановки;
только в конце раннего архея режим несколько приблизился к геосинклинальному;

Тонкой и достаточно пластичной первичной корой, из-за чего не могли возникать сводовые поднятия и глубинные разломы;

Внедрением огромных масс гранитоидов в результате саамского диастрофизма, которое привело к утолщению земной коры до 25-30 км (Салоп, 1982).

Наиболее распространенные супракрустальные породы - меланократовые амфиболовые, амфибол-пироксеновые и пироксеновые плагиогнейсы, кристаллические сланцы, амфиболиты. Это - сильно метаморфизованные основные либо ультраосновные лавы, возможно, туфы. В Западной Гренландии, на Кольском п-ове, на Алданском щите, в Южной Африке установлены коматииты -высокомагнезиальные вулканические ультрамафит-мафитовые породы. Метабазиты нередко гранитизированы, превращены в плагиогнейсы (мигматиты), эндербиты (натриевые чарнокиты), чарнокиты. С метавулканитами ассоциируют биотитовые, гранат-биотитовые, силлиманит- и кордие-ритсодержащие гнейсы.

Несомненно осадочными считаются мраморы кальцитового и доломитового состава, графит-содержащие гнейсы и кристаллические сланцы. Характерно преобразование пород в условиях гранулитовой и амфиболитовой фаций. Гранулитовая фация регионального метаморфизма явля-ется исключительной особенностью нижнего архея.

Лучше всего изучены нижнеархейские образования на Алданском щите. Супракрустальный комплекс щита - алданская серия - представлен наиболее полно из всех известных подразделений нижнего архея. Возраст серии - 3.800-4.000 млн. лет. Породы алданской серии представлены кварцитами, пироксеновыми и амфиболовыми кристаллическими сланцами, амфиболитами, гней-сами иенгрской подсерии мощностью более 3 км. Выше залегает тимптонская подсерия - гнейсы, амфиболиты с пачками мраморов и известково-силикатных пород. Мощность около 8 км. Еще выше - джелтулинская подсерия, сложенная гранат-биотитовыми, пироксеновыми гнейсами, гра-нулитами и мраморами. Мощность более 4 км. Общая мощность алданской серии порядка 15 км. Среди докембрийских отложений выделяют различные литостратиграфические комплексы, сло-женные ассоциациями пород, отражающими специфику среды их образования. В нижнеархейс-ких образованиях выделяется шесть литостратиграфических комплексов (Салоп, 1982):

1. Иенгрский метабазит-кварцитовый: основные кристаллические сланцы, амфиболиты
(метабазиты), горизонты кварцитов и высокоглиноземистых гнейсов (зверевская толща Станового
хребта, далдынская серия Анабарского поднятия, серия Раномена Мадагаскара).

2. Унгринский метабазитовый: меланократовые двупироксеновые и амфиболовые кристал-лические сланцы, амфиболиты по основным и ультраосновным вулканитам, прослои гнейсов и силикатно-магнетитовых пород (унгринская свита Алданского щита, верхнеанабарская подсерия
Анабарского массива, канская серия Енисейского поднятия, в Северной Америке - нижняя часть гренвиллского комплекса; нижняя часть нижнеархейских комплексов Экваториальной, Западной и Северо-Западной Африки; в Австралии - нижние части гнейсо-гранулитовых комплексов).

3. Федоровский метабазит-карбонатный: основные пироксеновые кристаллические сланцы, амфиболиты (метабазиты) с подчиненными прослоями карбонатных пород (мраморов, известково-силикатных сланцев). Прослои гнейсов, кварцитов, магнетитовых пород. К этому комплексу приурочены древнейшие в истории Земли эвапориты (ангидритсодержащие мраморы, известковистые кристаллические сланцы Алданского щита, Канады, Бразилии), а также богатые фосфором породы. Распространен на Анабарском массиве, в Енисейском кряже, в Присаянье (верхняя частьшарыжалгайской серии), на Украинском щите (тетерево-бугская серия, белоцерковская свита), в Cеверной Америке (верхняя часть гренвиллского комплекса), в Африке и др.

4. Сутамский комплекс: тонкослоистые гранат-биотитовые гнейсы, грубослоистые или мас-сивные лейкократовые гранатовые гранулиты, прослои различных гнейсов, метабазитов, мрамо-ров, высокоглиноземистых гнейсов. Известен на Анабарском массиве, в Восточном Саяне, Стано-вом хребте, Кольском п-ове, в Африке.

5. Слюдянский комплекс: карбонатные и силикатно-карбонатные породы и различные крис-таллические парасланцы (гранат-биотитовые, силлиманит-кордиеритовые и др.). Карбонатов
здесь не менее 30%, а метабазиты имеют подчиненное значение. Слюдянская серия Южного При-байкалья, бирюсинская и дербинская серии Восточного Саяна, ваханская серия Памира и др. По мраморам из бирюсинской серии получен возраст 3,7 млрд. лет.

6. Серия Исуа: амфиболиты, пара- и ортосланцы, джеспилиты, кислые метавулканиты, метаконгломераты. Мощность серии 2 км. В Гренландии породы серии залегают в виде дугообразной полосы среди обширного поля гнейсов Амитсок - тоналитовых очковых пород с темноцветными минералами гранулитовой и амфиболитовой фаций. Породы серии Исуа датируются 3.760 млн.лет; гнейсы Амитсок - 3.980 млн. лет, гранито-гнейсы Готхоб - 4.065 млн. лет.

Серия Исуа, вероятно, сформировалась между двумя периодами тектоно-магматической акти-визации. Перед отложением этой серии имел место готхобский диастрофизм (фаза складчатости) II порядка (4 млрд. лет), с которым связано формирование гнейсов Амитсок (гранулитовая фация). В конце формирования серии Исуа произошел саамский диастрофизм I порядка (3.750-3.500 млн. лет), завершивший саамскую эпоху тектогенеза.

Выдержанность состава супракрустальных толщ нижнего архея на огромных площадях зас-тавляет предположить единообразные условия их образования.

Отсутствие каких-либо признаков областей размыва свидетельствует об отложении осадков и излиянии лав в огромном мелководном океане - "Панталасса". Отсутствие грубообломочных по-род указывает на отсутствие расчлененного рельефа.

В федоровском комплексе впервые появляются карбонатные породы, что знаменует важный стра-тиграфический рубеж, связанный с уменьшением в составе атмосферы и гидросферы содержания СО 2 и сильных кислот. После отложения четвертого - сутамского - комплекса содержание СО 2 упало еще больше, так что пятый - слюдянский - комплекс оказался существенно карбонатным.

Железорудные толщи могли произойти за счет выноса железа при вулканических извержени-ях, а кремнезем (SiO 2) находился в избытке в растворе. Графитистые породы нижнего архея (фе-доровский, слюдянский комплексы и др.) имеют, скорее всего, абиогенное происхождение, по-скольку в то время еще не было достаточного количества биомассы для формирования столь боль-шого количества графитосодержащих пород. Это же соображение относится и к фосфатоносным. породам.

Значительная часть нижнеархейских супракрустальных толщ сложена глубоко метаморфизо-ванными вулканитами основного и отчасти ультраосновного состава. Наличие кислых лав не до-казано. Метабазиты иенгрского и унгринского комплексов отвечают толеитовым базальтам, фе-доровского комплекса - щелочным базальтам, а более молодых частей алданской серии - вулканитам толеитового и щелочно-базальтового рядов, с участием базальтов, нефелинитов. Таким обра-зом, со временем наблюдается возрастание щелочности пород.

Метабазиты слюдянского комплекса близки к андезибазальтовой формации островных дуг и отчасти базальтам геосинклинальных формаций.

Для некоторых нижнеархейских комплексов характерно присутствие глубоко метаморфизо-ванных ультраосновных высокоглиноземистых пород - коматиитов (более широко развитых в вер-хнем архее).

Плутонические образования наиболее развиты в саамском цикле тектогенеза в интервале 3.750-3.500 млн. лет. Возможность применения актуалистического метода при геологической интерпретации по-род нижнего архея сильно ограничена, так как генезис многих пород неясен. Например, в нижнем архее отсутствуют псефиты (кроме верхов серии Исуа). Кварциты ассоциируют с базитами и ульт-рабазитами, что в фанерозое не наблюдается. Своеобразные тектонические структурь» -гнейсовые овалы не имеют аналогов в более молодых толщах.

Физико-географические условия

Особенности метаосадочных пород нижнего архея указывают на существование горячей гид-росферы. Изучение изотопного состава кремнистых пород, в частности отношений дейтерия к во-дороду и изотопов 18 О/ 16 О, зависящих от температуры, показало следующее распределение сред-негодовой температуры (Салоп, 1982).

В раннем архее температура поверхности Земли была, вероятно, выше 70°С или даже выше 100°С. Такая температура поверхности могла быть обусловлена только парниковым эффектом, со-зданным мощной атмосферой. Напрашивается аналогия с современной атмосферой Венеры, тем-пература поверхности которой 480°С, давление углекислой атмосферы около 90 бар.

Атмосфера и гидросфера являются в основном продуктами дегазации и отделения жидких и газообразных составляющих из мантии. Формирование первичной земной коры сопровождалось образованием первичной, существенно водородной, атмосферы, позднее рассеявшейся в косми-ческом пространстве. Вторичная примитивная (первичная в геологическом смысле) атмосфера возникла только после снижения температуры, когда газы уже не могли преодолеть силу притяже-ния. В дальнейшем атмосфера менялась в зависимости от процессов вулканизма, седиментации, а затем и от фотосинтеза растений.

Состав примитивной атмосферы соответствовал составу газовых продуктов вулканических извержений (водяной пар, углекислота, азот, "кислые дымы" - НС1, HF , H 2 S , аммиак, метан).

Содержание воды в мантии Земли в три раза больше массы воды современных океанов. Источ-ником этой воды явился процесс образования лав базальтового и андезитового состава. Углекисло-ты за геологическую историю отложилось в карбонатах в 10 тыс. раз больше, чем теперь содер-жится ее в атмосфере (а усвоенной растениями и погребенной в 1000 раз больше, чем в атмосфере).

Первичная атмосфера содержала около 99% СО 2 (без учета воды). Давление должно было со-ставлять около 70 бар, а с учетом растворения СО 2 в гидросфере 50-60 бар. При таком давлении температура кипения воды должна быть 260-285°С.

Свободный кислород во вторичной (примитивной) атмосфере практически отсутствовал. Ос-новной его источник - биогенный фотосинтез. Кислород, как указывает Л.И.Салоп, отсутствовал в этой атмосфере, судя по изотопному составу серы в осадочных породах, до рубежа примерно 2,3-2,4 млрд. лет (PR |). По данным М.Руттена (1973), около 3 млрд. лет назад была превышена точка Юри, когда содержание кислорода составляло 0,001 от современного, а к концу архея (2,5 млрд. лет) была достигнута точка Пастера, в которой содержание кислорода составляет 0,01 от современного. До этого уровня атмосфера еще считается бескислородной. Анализ газовых включений в хемогенных кварцитах иенгрской серии дал такие результаты: СО 2 - 60%, H 2 S , SO , NH 3 , HCI , HF около 35%, N 2 + редкие газы 1-8%. В более молодых хемогенных кремнистых осад-ках содержание кислорода закономерно увеличивается: AR 2 - 5,5%, PR -PZ , - 12%, PZ 2 -KZ - 18%. Одновременно происходит снижение содержания СО 2 от 42% в AR 2 до современного в кайнозое.

Таким образом, атмосфера раннего архея была очень плотной, бескислородной, горячей и со-стояла в основном из паров воды, углекислоты и ряда других компонентов (характерна "кислые дымы"). Такая атмосфера обусловливала сильный парниковый эффект.

Гидросфера в раннем архее была резко углекислой, содержащей сильные кислоты, т.е. была агрессивной, заметно минерализованной и соленой. Об этом свидетельствуют и древние эвапори-ты (федоровский комплекс на Сибирской платформе, в Канаде, Бразилии). В результате взаимо-действия с большим количеством щелочей и щелочных земель состав воды приблизился к нейт-ральному (рН около 7).

ПОЗДНЕАРХЕЙСКИЙ ЭОН (ВЕРХНЕАРХЕЙСКАЯ ЭОНОТЕМА) - AR

Общая характеристика

Позднеархейский эон охватывает время 3.150-2.600 (по другим данным 2500) млн. лет. Образова-ния верхнеархейской эонотемы резко отличаются от нижнеархейской, знаменуя собой начало нового крупного этапа истории Земли - платформенно-геосинклинального. Стратотип верхнего архея - надсе-рия Свазиленд (ЮАР, Свазиленд). Для супракрустального комплекса характерны осадочно-вулканоген-ные толщи, близкие к эвгёосинклинальному типу. Миогеосинклинальные и платформенные формации распространены пока незначительно. Породы метаморфизованы в условиях амфиболитовой и зеленос-ланцевой фаций, поэтому первичная природа распознается достаточно хорошо. Нередко встречаются конгломераты, характерны джеспилиты, локально развита гранитизация.

Верхнеархейские супракрустальные породы и прорывающие их интрузивы распространены широко на всех континентах. Это, например, лопский комплекс Карелии, лептитовая формация Швеции, тетеревская, конкско-верховцевская серии Украины, надсерия Свазиленд ЮАР, форма-ция Шерри-крик США, комплекс Пилбара Австралии и др.

Органический мир

К позднему архею создались условия, более благоприятные для существования и размноже-ния организмов: снизилась температура воды, уменьшилась ее кислотность и химическая агрес-сивность. В верхнеархейских породах обнаружены первые определимые органические остатки: фитолиты (строматолиты, онколиты) и микрофоссилии. Строматолиты представлены мелкими фестончатыми и куполовидными формами и пластовыми образованиями. Это, как уже указыва-лось выше, продукты жизнедеятельности цианобионтов. Микрофоссилии - это также цианобионты и бактерии. В кремнистых породах серии Фиг-Три (Южная Африка) встречены микроскопи-ческие образования, напоминающие одноклеточные водоросли и бактерии. Количество биомассы в сравнении с ранним археем значительно возросло, но она была представлена исключительно прокариотами, так как эукариоты еще не возникли. От более молодых аналогичных ископаемых позднеархейские прокариоты отличаются меньшим размером клеток.

Деятельность цианобионтов постепенно привела к увеличению количества кислорода в ат-мосфере и гидросфере. Около 3 млрд. лет назад была превышена точка Юри, т.е. содержание кис-лорода в атмосфере поднялось выше 0,001 от современного. С этим впоследствии будут связаны активизация развития и усложнение других групп организмов, а также изменение процессов осад-конакопления.

Структуры земной коры и породообразование

Во всех районах зеленокаменные породы верхнего архея развиты в виде узких, часто непра-вильных по форме участков, представляющих структуры геосинклинального типа, разделенные обширными полями глубоко метаморфизованных пород нижнего архея. Между верхнеархейскими и нижнепротерозойскими толщами почти повсеместно наблюдается резко выраженное несогласие.

Для верхнего архея характерны различные вулканиты с преобладанием основных: толеито-вые базальты, коматииты, диабазы, андезибазальты. Часто встречается шаровая отдельность. Из обломочных пород преобладают граувакки, аркозы, алевролиты, пелиты и конгломераты. Самые распространенные тектонические структуры - гнейсовые и гранито-гнейсовые купо-ла, диаметром 10-40 (не более 100) км. Купола окаймляются зеленосланцевыми породами и обра-зуют целые группы, слагающие протяженные "гранит-зеленокаменные пояса", располагающие-ся между относительно стабильными массивами - протоплатформами.

Зеленокаменные пояса представляют собой, наиболее вероятно, обширные прогибы, ослож-ненные разломами и возникшие в результате глобального растяжения земной коры. По мнению Л.И.Салопа, системы прогибов и разделяющих их поднятий следует рассматривать как древней-шие геосинклинальные области - протогеосинклинали.

Зеленокаменные пояса распределены неравномерно. Области развития нижнеархейских толщ, лишенные зеленокаменных поясов, вероятно, являются древнейшими более стабильными элементами земной коры, которые могут быть названы протоплатформами.

Наиболее полные и лучше всего изученные разрезы верхнего архея находятся в Южной Аф-рике, Канаде и Западной Австралии.

Поле развития надсерии Свазиленд (ЮАР, Свазиленд) - стратотипа верхнего архея - находит-ся в горном районе Барбертон и представляет собой в структурном отношении Свазилендский синклинорий.

По данным Д.Хантера, нижняя часть разреза представлена древним гнейсовидным комплек-сом, состоящим из пород амфиболитовой и гранулитовой фаций метаморфизма. Они сформиро-ваны задолго до накопления надсерии Свазиленд и встречаются в этой последней в виде галек конгломератов.

Породы надсерии Свазиленд характеризуются, в отличие от пород основания, низкими ступе-нями метаморфизма (зеленосланцевая фация) с хорошо различимыми первичными структурами. Снизу вверх в этой"надсерии выделяются три серии: Онвервахт, Фиг-Три иМодис.

Серия Онвервахт подразделяется на три формации:

Нижний Онвервахт: основные подушечные лавы и линзы ультрабазитов, тонкие прослои черных кремнистых пород, кислые туфы. Ультраосновные и основные породы богаты Mg и бедны А1 и К и выделены в особую группу коматиитов мощностью более 2 км.

Средний Онвервахт (формация реки Комати): подушечные базальты и ультраосновные лавы, полевошпат-порфировые интрузивы (3-4 км).

Верхний Онвервахт - циклическое повторение подушечных базальтов или андезитов, кислых лав и кремнистых пород (5 км).

Серия Фиг-Три (фиговое дерево) включает (снизу вверх):

Хемогенные осадки (полосчатые кремнистые, тальк-карбонатные, кварц-серицитовые породы);

Граувакки, глинистые сланцы, полосчатые кремнистые породы;

Граувакки, глинистые сланцы, железистые кварциты, туфы.
Общая мощность серии Фиг-Три более 2 км. Серия Модис лежит с несогласием и представлена полимиктовыми конгломератами, поле-вошпатовыми песчаниками, алевролитами, глинистыми сланцами (мощность 3,1 км).

Общая мощность надсерии Свазиленд до 16 км. После отложения пород серии Модис все толщи надсерии Свазиленд были смяты в складки, раз-биты крутыми надвигами на чешуйчато и веерообразно расположенные пластины и интрудированы многочисленными телами гранитоидов, древнейшие из которых имеют возраст 3-3,4 млрд. лет.

Надсерия Свазиленд относится к древнейшим образованиям зеленокаменных синклинориев.

На Канадском щите в качестве парастратотипа верхнего архея рассматриваются осадочно-вулканогенные толщи провинции Сьюпериор (оз. Верхнее).

Они слагают зеленокаменные пояса - удлиненные изолированные участки синклинорного строения, в которых линейные, часто изоклинальные складки чередуются с куполовидными структурами. Зеленокаменные пояса разделены полями гранитоидов, гранито-гнейсов и гнейсов.

Зеленокаменные толщи обычно имеют трехчленное строение: внизу и вверху - обломочные породы, иногда вулканиты, в средней части преобладают вулканиты.

Все зеленокаменные толщи прорваны крупными массивами биотитовых и амфиболовых гра-нитов и гранодиоритов с возрастом 2.600-2.800 млн. лет. Эти интрузии связаны с беломорским (кеноранским) диастрофизмом.

На Балтийском щите образования верхнего архея лучше всего изучены в Карелии, на Кольс-ком п-ове и на востоке Финляндии. В качестве регионального стратотипа принимается гимольс-кая серия развитая в Карелии вблизи границы с Финляндией (в Финляндии это серия Иломанти). Для этой серии характерно двучленное строение: внизу основные эффузивы, выше осадочные по-роды и кислые вулканиты.

Все верхнеархейские толщи Балтийского щита залегают трансгрессивно, иногда с конгломе-ратами в основании, на породах нижнего архея, главным образом на серых гнейсах, и перекрыва-ются с резким несогласием породами нижнего протерозоя.

Толщи верхнего архея прорваны большим количеством гранодиоритовых и микроклин-плагиоклазовых гранитных массивов с возрастом 2.600-2.800 млн. лет.

Корреляция верхнего архея Балтийского щита со стратотипом (ЮАР, Свазиленд): коматииты Финляндии отвечают нижней части серии Онвервахт. Нижние вулканогенные толщи сопоставля-ются с верхней частью серии Онвервахт. Верхние вулканогенно-терригенные толщи отвечают се-рии Фиг-Три. Самые верхние свиты гимольской серии (окуневская, кейвская) примерно соответ-ствуют серии Модис.

Общая мощность верхнего архея Балтийского щита 4-8 км (в 2-4 раза меньше, чем в страто-типе - в Южной Африке). На Украинском щите верхний архей наиболее полно представлен в бассейне среднего тече-ния Днепра, где развита конкско-верховцевская серия, залегающая несогласно на гнейсах нижнего архея. В основании серии присутствуют высокоглиноземистые или чистые кварциты. Выше зале-гают метабазиты, средние и кислые вулканиты, реже метаосадочные породы (мощность до 5 км). В средней части серии встречаются джеспилиты.

Породы серии залегают в узких, изогнутых в плане синклиналях, расположенных между ку-полами гнейсо-гранитов нижнего архея. Возраст гранитоидов, прорывающих зеленокаменные по-роды - 2.600-2.800 млн. лет.

Верхняя часть конкско-верховцевской серии приблизительно соответствует серии Фиг-Три. Отложения верхнего архея по своему составу в различных районах мира очень похожи друг на друга. Среди них, по данным Л.И.Салопа, выделяется четыре глобально выраженных литостра-тиграфических комплекса.